An extension of the memristive system: from tunable conductance to reconfigurable photoresponse
FAYETTEVILLE, GA, USA, August 15, 2023/EINPresswire.com/ -- Conventional artificial-intelligence vision technology uses separate sensing, computing, and storage units to process vision data. The frequent movement of redundant data between sensors, processors and memory results in high power consumption and latency. Scientists in China designed a novel device, in which photoexcited carriers and ion migration are coupled, that can store and read the tunable short-circuit photocurrent in a non-volatile mode. This new concept of device enables all-in-one sensing-memory-computing approaches for neuromorphic vision hardware.
In traditional vision systems, the optical information is captured by a frame-based digital camera, and then the digital signal is processed afterwards using machine-learning algorithms. In this scenario, a large amount of data (mostly redundant) has to be transferred from a standalone sensing elements to the processing units, which leads to high latency and power consumption. To address this problem, much effort has been devoted to developing an efficient approach, where some of the memory and computational tasks are offloaded to sensor elements that can perceive and process the optical signal simultaneously.
In a new paper published in Light Science & Application, a team of scientists, led by Professor Weida Hu from School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China, and co-workers have developed a non-volatile photo-memristor, in which the reconfigurable responsivity can be modulated by the charge and/or photon flux through it and further stored in the device. The non-volatile photo-memristor has a simple two-terminal architecture, in which photoexcited carriers and oxygen-related ions are coupled, leading to a displaced and pinched hysteresis in the current-voltage characteristics. For the first time, non-volatile photo-memristors implement computationally complete logic with photoresponse-stateful operations, for which the same photo-memristor serves as both a logic gate and memory, using photoresponse as a physical state variable instead of light, voltage and memresistance. Polarity reversal of photo-memristors shows great potential for in-memory sensing and computing with feature extraction and image recognition for neuromorphic vision.
The photo-memristor demonstrates tunable short-circuit current in a non-volatile mode under illumination. By mimicking the biological functionalities of the human retina and designing specific device structures, the devices can act as neural network for neuromorphic visual processing and implementation of completely photoresponse-stateful logic operations triggered by electrical and light stimuli together. It can support various kinds of sensing tasks with all-in-one sensing-memory-computing approaches. These scientists summarize the operational principle and feature of their device:
“We design a two-terminal device with MoS2-xOx and specific graphene for three purposes in one: (1) to provide low barrier energy for the migration of oxygen ions; (2) to perform as geometry-asymmetric metal–semiconductor–metal van der Waals heterostructures with multi-photoresponse states; and (3) as an extension of a memristor, this device not only provides tunable conductance, but also demonstrates reconfigurable photoresponse for reading at zero bias voltage.”
“Moreover, the tunable short-circuit photocurrent and photoresponse can be increased to 889.8 nA and 98.8 mA/W, respectively, which are much higher than that of other reconfigurable phototransistors based on 2D materials. To reverse the channel polarity and obtain a gate-tunable short-circuit photocurrent, the channel semiconductor must be thin enough. Thus, it is difficult to use the thick film needed to absorb enough light to get a large signal. In our case, the mechanism of the two-terminal device rearrangement is based on ion migration, which is not limited by the thickness. We can increase the thickness of the film to absorb more photons and get a large short-circuit photocurrent.” they added.
“This new concept of a two-terminal photo-memristor not only enables all-in-one sensing-memory-computing approaches for neuromorphic vision hardware, but also brings great convenience for high-density integration.” the scientists forecast.
###
References
DOI
10.1038/s41377-023-01079-5
Original Source URL
https://doi.org/10.1038/s41377-023-01079-5
Funding information
This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 62261136552, 62005303, 62134001, 62104053, 61973294), National Key Research and Development Program of China (Grant No. 2021YFA0715602)
About Light: Science & Applications
The Light: Science & Applications will primarily publish new research results in cutting-edge and emerging topics in optics and photonics, as well as covering traditional topics in optical engineering. The journal will publish original articles and reviews that are of high quality, high interest and far-reaching consequence.
In traditional vision systems, the optical information is captured by a frame-based digital camera, and then the digital signal is processed afterwards using machine-learning algorithms. In this scenario, a large amount of data (mostly redundant) has to be transferred from a standalone sensing elements to the processing units, which leads to high latency and power consumption. To address this problem, much effort has been devoted to developing an efficient approach, where some of the memory and computational tasks are offloaded to sensor elements that can perceive and process the optical signal simultaneously.
In a new paper published in Light Science & Application, a team of scientists, led by Professor Weida Hu from School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China, and co-workers have developed a non-volatile photo-memristor, in which the reconfigurable responsivity can be modulated by the charge and/or photon flux through it and further stored in the device. The non-volatile photo-memristor has a simple two-terminal architecture, in which photoexcited carriers and oxygen-related ions are coupled, leading to a displaced and pinched hysteresis in the current-voltage characteristics. For the first time, non-volatile photo-memristors implement computationally complete logic with photoresponse-stateful operations, for which the same photo-memristor serves as both a logic gate and memory, using photoresponse as a physical state variable instead of light, voltage and memresistance. Polarity reversal of photo-memristors shows great potential for in-memory sensing and computing with feature extraction and image recognition for neuromorphic vision.
The photo-memristor demonstrates tunable short-circuit current in a non-volatile mode under illumination. By mimicking the biological functionalities of the human retina and designing specific device structures, the devices can act as neural network for neuromorphic visual processing and implementation of completely photoresponse-stateful logic operations triggered by electrical and light stimuli together. It can support various kinds of sensing tasks with all-in-one sensing-memory-computing approaches. These scientists summarize the operational principle and feature of their device:
“We design a two-terminal device with MoS2-xOx and specific graphene for three purposes in one: (1) to provide low barrier energy for the migration of oxygen ions; (2) to perform as geometry-asymmetric metal–semiconductor–metal van der Waals heterostructures with multi-photoresponse states; and (3) as an extension of a memristor, this device not only provides tunable conductance, but also demonstrates reconfigurable photoresponse for reading at zero bias voltage.”
“Moreover, the tunable short-circuit photocurrent and photoresponse can be increased to 889.8 nA and 98.8 mA/W, respectively, which are much higher than that of other reconfigurable phototransistors based on 2D materials. To reverse the channel polarity and obtain a gate-tunable short-circuit photocurrent, the channel semiconductor must be thin enough. Thus, it is difficult to use the thick film needed to absorb enough light to get a large signal. In our case, the mechanism of the two-terminal device rearrangement is based on ion migration, which is not limited by the thickness. We can increase the thickness of the film to absorb more photons and get a large short-circuit photocurrent.” they added.
“This new concept of a two-terminal photo-memristor not only enables all-in-one sensing-memory-computing approaches for neuromorphic vision hardware, but also brings great convenience for high-density integration.” the scientists forecast.
###
References
DOI
10.1038/s41377-023-01079-5
Original Source URL
https://doi.org/10.1038/s41377-023-01079-5
Funding information
This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 62261136552, 62005303, 62134001, 62104053, 61973294), National Key Research and Development Program of China (Grant No. 2021YFA0715602)
About Light: Science & Applications
The Light: Science & Applications will primarily publish new research results in cutting-edge and emerging topics in optics and photonics, as well as covering traditional topics in optical engineering. The journal will publish original articles and reviews that are of high quality, high interest and far-reaching consequence.
Wendy Chen
TranSpread
+1 865-405-5638
email us here
Legal Disclaimer:
EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.