Four Brookhaven Lab Projects Selected as R&D 100 Award Finalists
UPTON, NY — Four projects from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have been selected as finalists for the 2016 R&D 100 awards, which honor the top 100 proven technological advances of the past year as determined by a panel selected by R&D Magazine.
"This was a very strong year for research and development across various markets, led by many outstanding technologies that broadened the scope of innovation," said R&D Magazine Editor Anna Spiewak in a press release announcing the finalists. "We are honored to recognize these products and the project teams behind the design, development, testing, and production of these remarkable innovations and their impact in the field."
Robert Tribble, Brookhaven National Laboratory's Deputy Director for Science & Technology, added, "The Laboratory is pleased that four of our technologies have been selected as finalists for the 2016 R&D 100 awards. Our scientific mission includes translating new ideas into benefits to society. These awards recognize the important role the Lab plays in connecting research to commercial impact."
The winners will be announced on November 3, 2016, at the Gaylord National Resort & Convention Center in Oxon Hill, Maryland, near Washington, D.C.
The Brookhaven finalists are:
MoSoy Catalyst: A novel low-cost, high-performance electrocatalyst derived from biomass (soybean) and a non-precious transition metal (molybdenum) for producing hydrogen. The project was led by Brookhaven chemists James Muckerman, Etsuko Fujita, and Kotaro Sasaki with the participation of Wei-Fu Chen (former postdoctoral Research Associate) and twin sisters Shweta and Shilpa Iyer (high school summer students).
This technology delivers a durable and effective catalyst that can be used as a cathode electrode in either a solar photochemical electrolysis cell using sunlight or an electrolyzer using electricity from external sources, such as photovoltaics, to split water into hydrogen (at a cathode) and oxygen (at an anode). It eliminates the need for expensive metals such as platinum, improving the economic viability of this technology for producing hydrogen. The hydrogen can be compressed, stored and transported for use directly as a fuel or for hydrogenating carbon compounds in a process that mimics photosynthesis for producing energy-rich hydrocarbons. Read more about the MoSoy catalyst.
Nanostructured Anti-reflecting and Water-repellent Surface Coatings: A scalable, nanotechnology-based surface-texturing method that imparts perfect anti-reflection and robust water-repellency to silicon, glass, and some plastics. Brookhaven physicist Charles Black, recently named Director of the Lab's Center for Functional Nanomaterials (CFN), led this project.
This work leverages the ability of materials called block copolymers to self-assemble into ordered patterns with dimensions measuring tens of nanometers. The scientists use these self-assembled nanoscale patterns as templates for etching the surface of silicon, glass, or plastic. The resulting nanotextured surfaces have remarkable properties: the ability to absorb all wavelengths of light from any angle and robust water repellency (with water droplets carrying away particles of dirt). The technology could potentially be used to produce highly efficient, self-cleaning solar cells, glare-free cell phone screens, and perfectly transparent windows. Read more about the antireflective and water repellent results.
Hard X-ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics: A high-throughput hard x-ray scanning microscope with specialized lenses for imaging of a broad range of materials spanning from nanoscience to biology with the spatial resolution better than 20 nanometers.
This is a joint entry with DOE's Argonne National Laboratory, led at Brookhaven by physicists Evgeny Nazaretski and Yong Chu along with their NSLS-II collaborators. This novel MLL-based vacuum-compatible microscope is a general purpose x-ray instrument suitable for a broad range of imaging experiments. Multimodality of the scanning hard x-ray microscope allows users to perform comprehensive structural and chemical studies on various material systems with sub-20 nm spatial resolution. This unique instrument has been commissioned and is available to the NSLS-II user community.
Flex Plate: A type of lab-ware to be used in protein crystallization, where the protein crystals formed within can be studied using x-ray diffraction without the need for a plate-handling robot.
The device was developed by a group led by Brookhaven biophysicist Alex Soares, who works at Brookhaven's National Synchrotron Light Source II (NSLS-II), one of the world's brightest sources of x-rays for studying protein crystals. The Flex Plate is designed to operate in connection with standard liquid handling robots for high throughput screening of crystallization conditions for crystal discovery projects or chemical libraries for drug discovery projects.
The R&D 100 Awards
Since 1987, Brookhaven Lab has won more than 30 of the prestigious R&D 100 awards that celebrate the top 100 proven technological advances of the year as judged by R&D Magazine. These technologies include innovative new materials, chemistry breakthroughs, biomedical products, consumer items, testing equipment, and high-energy physics.
The first three of the four projects listed above were supported by the DOE Office of Science. Flex Plate was supported by the National Institutes of Health. All had additional funding from Brookhaven's internal Technology Maturation Program. NSLS-II and CFN are DOE Office of Science User Facilities.
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Legal Disclaimer:
EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.