There were 1,084 press releases posted in the last 24 hours and 400,540 in the last 365 days.

Functional diversity and metabolic response in benthic communities along an ocean acidification gradient

Highlights

  • Ocean acidification (OA) affect the distribution of traits within a community leading to the selection of specific functional traits.
  • Along with the selection of traits, OA led to differences in oxygen consumption between benthic communities following acidification gradient.
  • Altered acidified condition have a negative effect on the stability of the community resulting from changes in functional evennes of benthic communities.

Abstract

Altered ocean chemistry caused by ocean acidification (OA) is expected to have negative repercussions at different levels of the ecological hierarchy, starting from the individual and scaling up to the community and ultimately to the ecosystem level. Understanding the effects of OA on benthic organisms is of primary importance given their relevant ecological role in maintaining marine ecosystem functioning. The use of functional traits represents an effective technique to investigate how species adapt to altered environmental conditions and can be used to predict changes in the resilience of communities faced with stresses associated with climate change. Artificial supports were deployed for 1-y along a natural pH gradient in the shallow hydrothermal systems of the Bottaro crater near Panarea (Aeolian Archipelago, southern Tyrrhenian Sea), to explore changes in functional traits and metabolic rates of benthic communities and the repercussions in terms of functional diversity. Changes in community composition due to OA were accompanied by modifications in functional diversity. Altered conditions led to higher oxygen consumption in the acidified site and the selection of species with the functional traits needed to withstand OA. Calcification rate and reproduction were found to be the traits most affected by pH variations. A reduction in a community’s functional evenness could potentially reduce its resilience to further environmental or anthropogenic stressors. These findings highlight the ability of the ecosystem to respond to climate change and provide insights into the modifications that can be expected given the predicted future pCO2 scenarios. Understanding the impact of climate change on functional diversity and thus on community functioning and stability is crucial if we are to predict changes in ecosystem vulnerability, especially in a context where OA occurs in combination with other environmental changes and anthropogenic stressors.

Berlino M., Mangano M. C., Di Bona G., Lucchese M., Terzo S. M. C., Vittor C. D., D’Alessandro M., Esposito V., Gambi M. C., Del Negro. & Sarà G., in press. Functional diversity and metabolic response in benthic communities along an ocean acidification gradient. Marine Environmental Research. Article.

Like this:

Like Loading...

Related

Legal Disclaimer:

EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.